If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+16t=480
We move all terms to the left:
16t^2+16t-(480)=0
a = 16; b = 16; c = -480;
Δ = b2-4ac
Δ = 162-4·16·(-480)
Δ = 30976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30976}=176$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-176}{2*16}=\frac{-192}{32} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+176}{2*16}=\frac{160}{32} =5 $
| 3d-16=14d+7 | | 5w+3+6w=91 | | 3+4(2x+1)-2x=40+51 | | 8x^2=16x-40/9;x=1/3 | | 2k-8k-9=3k-9 | | 11x-100=69-2x | | 2.1+(w/7)=-9.1 | | 2x+x+89+67=360 | | (3x+7)=5x+50 | | 3/5c=15(5/3) | | 4d+8-2d=-4 | | -8x=-6x-12 | | 5+x(-2)=6 | | -8(y-3)=-3y+14 | | -11x-100=69-2x | | -5(c-3)=20+5c+10 | | 2x+30=38 | | −4p–5.7=11.1 | | -2(h+7)=-4 | | 6-12y=-6(2y-1) | | 4−7c=–5c | | -5-16p=-14-13p | | (x-8)^2-4=5 | | 5/1k=5 | | -85=5a | | 10+3+2x=38 | | 0.25x=106.25 | | 4x-69=4x+11 | | a—=6-4 | | 4x-69=4x+12 | | 4y+13y+10=19y-10 | | g/7+18=23 |